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Abstract

Data Mining is the process of identifying new patterns and insights in data.  As the vol-
ume of data collected and stored in databases grows, there is a growing need to provide
data summarization (e.g., through visualization), identify important patterns and trends,
and act upon the findings.  Insight derived from data mining can provide tremendous
economic value, often crucial to businesses looking for competitive advantages. A short
review of data mining and important theoretical results is provided, followed by recent
advances and challenges.

1 Introduction
Yahoo!'s traffic increased to 680 million page views per day on average…

Yahoo!'s communication platform delivered 4.4 billion messages… in June [2000]
-- Yahoo! Press Release, July 11, 2000

The amount of data stored on electronic media is growing exponentially fast.  Today’s data warehouses
dwarf the biggest databases built a decade ago [1], and making sense of such data is becoming harder and
more challenging.  Online retailing in the Internet age, for example, is very different than retailing a dec-
ade ago because the three most important factors of the past (location, location, and location) are irrele-
vant for online stores.

One of the greatest challenges we face today is making sense of all this data.  Data mining, or knowl-
edge discovery, is the process of identifying new patterns and insights in data, whether it is for under-
standing the Human Genome to develop new drugs, for discovering new patterns in recent Census data to
warn about hidden trends, or for understanding your customers better at an electronic webstore in order to
provide a personalized one-to-one experience.  The examples in this paper are from the e-commerce
world, but data mining has been used extensively in multiple domains including many scientific applica-
tions.  The paper is also restricted to structured mining; significant literature exists for text mining and
information retrieval.
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The paper is organized as follows.  Section 2 introduces data mining tasks and models, followed by a
quick tour of some theoretical results in Section 3.  Section 4 reviews the recent advances, followed by
some challenges in Section 5 and a summary in Section 6.

2 Data Mining Tasks and Models
The most exciting phrase to hear in science, the one that heralds new

discoveries, is not ’Eureka!’ (I found it!) but ’That’s funny ...’
Isaac Asimov

Data mining, sometimes referred to as knowledge discovery [2], is at the intersection of multiple re-
search areas, including Machine Learning [3, 4, 5, 6], Statistics [7, 8, 9], Pattern Recognition [10, 11, 12],
Databases [13, 14], and Visualization [15, 16].  Good marketing and business-oriented data mining books
are also available [17, 18, 19].   With the maturity of databases and constant improvements in computa-
tional speed, data mining algorithms that were too expensive to execute are now within reach.

Data mining serves two goals:

1. Insight: identify patterns and trends that are comprehensible, so that action can be taken based on
the insight.  For example, characterize the heavy spenders on a web site, or people that buy prod-
uct X.  By understanding the underlying patterns, the web site can be personalized and improved.
The insight may also lead to decisions that affect other channels, such as brick-and-mortar stores’
placement of products, marketing efforts, and cross-sells.

2. Prediction: a model is built that predicts (or scores) based on input data.  For example, a model
can be built to predict the propensity of customers to buy product X based on their demographic
data and browsing patterns on a web site.  Customers with high scores can be used in a direct mar-
keting campaign.   If the prediction is for a discrete variable with a few values (e.g., buy product X
or not), the task is called classification; if the prediction is for a continuous variable (e.g., cus-
tomer spending in the next year), the task is called regression.

The majority of research in data mining has concentrated on building the best models for prediction.
Part of the reason, no doubt, is that a prediction task is well defined and can be objectively measured on
an independent test-set.  Given a dataset that is labeled with the correct predictions, it is split into a train-
ing set and a test-set.  A learning algorithm is given the training set and produces a model that can map
new unseen data into the prediction.  The model can then be evaluated for its accuracy in making predic-
tions on the unseen test-set.  Descriptive data mining, which yields human insight, is harder to evaluate,
yet necessary in many domains because the users may not trust predictions coming out of a black box or
because legally one must explain the predictions.  For example, even if a Perceptron algorithm [20] out-
performs a loan officer in predicting who will default on a loan, the person requesting a loan cannot be
rejected simply because he is on the wrong side of a 37-dimensional hyperplane; legally, the loan officer
must explain the reason for the rejection.

The choice of a predictive model can have a profound influence on the resulting accuracy and on the
ability of humans to gain insight from it.  Some models are naturally easier to understand than others.  For
example, a model consisting of if-then rules is easy to understand, unless the number of rules is too large.
Decision trees, are also relatively easy to understand.  Linear models get a little harder, especially if dis-
crete inputs are used.  Nearest-neighbor algorithms in high dimensions are almost impossible for users to
understand, and non-linear models in high dimensions, such as Neural Networks are the most opaque.
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One way to aid users in understanding the models is to visualize them.  MineSet [21], for example, is a
data mining tool that integrates data mining and visualization very tightly.  Models built can be viewed
and interacted with.  Several movies are available at: http://www.sgi.com/software/mineset/demos.html.
Figure 1 shows a visualization of the Naïve-Bayes classifier.  Given a target value, which in this case was
who earns over $50,000 in the US working population, the visualization shows a small set of "important"
attributes (measured using mutual information or cross-entropy).  For each attribute, a bar chart shows
how much "evidence" each value (or range of values) of that attribute provides for the target label.  For
example, higher education levels (right bars in the education row) imply higher salaries because the bars
are higher.  Similarly, salary increases with age up to a point and then decreases, and salary increases with
the number of hour worked per week.  The combination of a back-end algorithm that bins the data, com-
putes the importance of hundreds of attributes, and then a visualization that shows the important attributes
visually, makes this a very useful tool that helps identify patterns.  Users can interact with the model by
clicking on attribute values and seeing the predictions that the model makes.

Figure 1: A visualization of the Naive-Bayes classifier

3 Data Mining Theory
Reality is the murder of a beautiful theory by a gang of ugly facts

   Robert L. Glass [22]

This section provides a short review of some theoretical results in data mining.

1. No free lunch.  A fundamental observation is that learning is impossible without assumptions.   If
all concepts are equally likely, then not only is learning impossible, but no algorithm can dominate
another in generalization accuracy [23, 24].  The result is similar to the proof that data compres-
sion is not always possible (yet everyone enjoys the saving provided by data compression algo-
rithms).  In practice, learning is very useful because the world does not present us with uniform
worst-case scenarios.

2. Consistency.  While parametric models (e.g., linear regression) are known to be of limited power,
non-parametric models can be shown to learn "any reasonable" target concept given enough data.
For example, nearest-neighbor algorithms with a growing neighborhood have been shown to have
asymptotically optimal properties under [25].  Similar results exist for the consistency of decision
tree algorithms [26].  While asymptotic consistency results are comforting because they guarantee
that with enough data the learning algorithms will converge to the target concept one is trying to
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learn, our world is not so ideal.  We are always given finite amounts of data from which to learn
and rarely do we reach asymptopia.
An excellent example of the problem of nearest-neighbors not being so "near" is as follows [8].
Assume a 20 dimensional unit ball (radius = 1) centered at the origin with 100,000 points uni-
formly distributed.  The median distance from the origin to the closest point is 0.55, more than half
way to the boundary.  Most points are therefore closer to the boundary of the sample space than to
another point!  In a few dimensions, standard visualization methods work well; in higher dimen-
sions our intuition is commonly wrong and data mining can help.

3. PAC learning.  Probably Approximately Correct learning [27,28] is a concept introduced to pro-
vide guarantees about learning.  Briefly, assuming that the target can be described in a given hy-
pothesis space (e.g., disjunctions of conjunctions of length k), a PAC learning algorithm can learn
the approximate target with high probability.  The two parameters typically given as input to a
PAC learning algorithm are epsilon and delta.  The algorithm must satisfy that at least (1-delta)
fraction of the time, the error between the actual target concept and the predictions made is
bounded by epsilon. PAC learning theory defines bounds on the number of examples needed to
provide such guarantees.  One of the more interesting results in PAC learning theory is that a weak
learning algorithm, which can classify more accurately than random guessing (e.g., epsilon < 0.5),
can always be boosted into a strong learning algorithm, which can produce classifiers of arbitrary
accuracy [29] (more training data will be needed, of course).  This theoretical result led to inter-
esting practical developments mentioned below.

4. Bias-Variance decomposition.  The expected error of any learning algorithm for a given target
concept and training set size can be decomposed into two terms: the bias and the variance [30].
The importance of the decomposition is that it is valid for finite training set sizes, not asymptoti-
cally, and that the terms can be measured experimentally.  The bias measures how closely the
learning algorithm’s average guess (over all possible training sets of the given training set size)
matches the target.  The variance measures how much the learning algorithm’s guess varies for dif-
ferent training sets of the given size.  Many unsuccessful and painful routes have been taken by re-
searchers trying to improve a learning algorithm by enlarging the space of models, which can re-
duce the bias, but may also increase the variance. For example, Figure 2 shows how 10 data
points, assumed to be slightly noisy, can be reasonably fit with a quadratic polynomial, and per-
fectly fit with a 9-th degree polynomial that overfits the data.  A learning algorithm trying to fit
high-degree polynomials will generate very different polynomials for different training sets, and
hence have high variance.  A learning algorithm that always fits a linear model will be more stable,
but will be biased for quadratic and higher-order models.  Making the analogy to decision tree
models, finding the smallest decision tree that perfectly fits the data (an NP-hard problem) takes a
long time and often results in worse generalizations than using a simple greedy algorithm that ap-
proximately fits the data.  The reason is that the smallest perfect trees generated for similar data
sets of the same size vary significantly in structure and predictions and hence the expected error
has a large variance term.  For several algorithms, it is known how to move along this bias-
variance tradeoff through regularization techniques.
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Figure 2: the left figure shows a quadratic fit to data, but the fit is not perfect.  The right figure shows a 9th degree polyno-
mial fit that perfectly passes through all the data points.  If the data is expected to contain some noise, the model on the left
will probably make a better prediction at x=9.5 than the squiggly model on the right, which (over)fits the data perfectly.

4 Recent Advances
The advancement of the arts, from year to year, taxes our credulity and

seems to presage the arrival of that period when human improvement must end
        Henry Elsworth, US Patent Office, 1844

This section provides a brief summary of recent advances in the field of data mining.  Several ad-
vances specific to machine learning are described in the AI Magazine [31].

1. Multiple model learning.  Two learning techniques developed in the last few years have had sig-
nificant impact: Bagging and Boosting.  Both methods learn multiple models and vote them in or-
der to make a prediction and both were shown to be very successful in improving prediction accu-
racy on real data [32, 33].  Bagging [34] generates bootstrap samples by repeatedly sampling the
training set with replacement.  A model is built for each sample and they are then uniformly voted.
Boosting algorithms, and specifically the AdaBoost algorithm [35], generate a set of classifiers in
sequence.  Each classifier is given a training set where examples are reweighted to highlight those
previously misclassified.

2. Associations.  A common problem in retailing is to find combinations of products that when
bought together imply the purchase of another product.  For example, an association might be that
the purchase of hot dogs and Coke implies the purchase of chips with high probability.  Several
algorithms were developed to find such associations for market basket analysis [13].  Given a
minimum support (percentage of the data that has to satisfy the rule) and a minimum confidence
(the probability that the right hand side is satisfied given the left-hand side), the algorithms find all
associations.  Note that unlike prediction tasks, this is a descriptive task where the result is well
defined and the algorithms must be sound and complete.  The main observation in these algo-
rithms is that in order for a combination of size L to have minimum support, each of its subsets of
size (L-1) must have minimum support.

3. Scalability (both speed and dataset size).  Several advances have been made in scaling algo-
rithms to larger datasets and parallelizing them [36,37, 14]

5 Challenges
Laggards follow the path of greatest familiarity.  Challengers, on the other hand,

follow the path of greatest opportunity, wherever it leads.
Competing for the Future  / Hamel and Prahalad
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This section provides some challenging problems.

1. Make Data Mining Models Comprehensible to Business Users.  Business users need to under-
stand the results of data mining. Few data mining models are easy to understand and techniques
need to be developed to explain or visualize existing ones (e.g., [38]) or new models that are sim-
ple to understand with matching algorithms need to be derived.  This is particularly hard for re-
gression models.  A related problem is that association algorithms usually derive too many rules
(e.g., 100,000) and we need to find ways to highlight the "interesting" rules or families of associa-
tions.

2. Make Data Transformations and Model Building Accessible to Business Users.  An important
issue that has not been mentioned above is the need to translate user’s questions into a data mining
problem in relational format.  This often requires writing SQL, Perl scripts, or small programs.
Even defining what the desired transformations and features should be is a knowledge-intensive
task requiring significant understanding of the tasks, the algorithms, and their capabilities.  Can we
design a transformation language more accessible to business users?  Can we automatically trans-
form the data?

3. Scale algorithms to large volumes of data.  It is estimated that the amount of text in the Library
of Congress can be stored in about 17 terabytes of disk space [17].  The package-level detail data-
base used to track shipments at UPS is also 17 terabytes.  Most data mining algorithms can handle
a few gigabytes of data at best, so there are three to four orders of magnitude to grow  before we
can attack the largest databases that exist today.  In addition, most algorithms learn in batch, but
many applications require real-time learning.

4. Close the loop: identify causality, suggest actions, and measure their effect.   Discoveries may
reveal correlations that are not causal.  For example, human reading ability correlates with shoe
size, but wearing larger shoes will not improve one’s reading ability.  (The correlation is explained
by the fact that children have smaller shoe sizes and cannot read as well.)  Controlled experiments
and measurements of their effects can help pinpoint the causal relationships.  One advantage of the
online world is that experiments are easy to conduct: changing layout, emphasizing certain items,
and offering cross-sells can all be easily done and their effect can be measured.  For electronic
commerce, the World Wide Web is a great laboratory for experiments, but our learning techniques
need to improve to offer interventions and take them into account.

5. Cope with privacy issues.  Data mining holds the promise of reducing the amount of junk mail
we receive by providing us with more targeted messages.  However, data collection can also lead
to abuses of the data, raising with many social and economic issues.  This is doubly true in the on-
line world where every page and every selection we make can be recorded.

6 Summary

You press the button, and we’ll do the rest
  -- Kodak advertisement

Taking pictures and developing them (or loading them into a computer) has become trivial: there is no
need to focus, adjust the shutter speed and aperture, or know anything about chemistry to take great pic-
tures.   Data mining and related technologies have had significant advances, but we have yet to build the
equivalent of the point-and-click cameras. This short review of the basic goals of data mining, some the-
ory, and recent advances should provide those interested with enough information to see the value of data
mining and use it to find nuggets; after all, almost everyone has access to the main ingredient that is
needed: data.
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